
INTERNATlONAL JOURNAL FOR NUMERlCAL METHODS IN FLUIDS, VOL. 18, 733-746 (1994)

FINITE VOLUME METHODS FOR LAMINAR AND
TURBULENT FLOWS USING A PENALTY FUNCTION

APPROACH

J. SIMONEAU* A N D A. POLLARD?
Deparimenr of Mechanical Engineering, Queen's University at Kingston, Kingston, Om., K7L 3N6, Canada

SUMMARY
A penalty function, finite volume method is described for two-dimensional laminar and turbulent flows.
Turbulence is modelled using the k--E model. The governing equations are discretized and the resulting
algebraic equations are solved using both sequential and coupled methods. The performance of these
methods is gauged with reference to a tuned SIMPLE-C algorithm. Flows considered are a square cavity
with a sliding top, a plane channel flow, a plane jet impingement and a plane channel with a sudden
expansion. A sequential method is employed, which uses a variety of dicretization practices, but is found
to be extremely slow to converge; a coupled method, evaluated using a variety of matrix solvers, converges
rapidly but, relative to the sequential approach, requires larger memory.

KEY WORDS Penalty function Finite volume Direct Solver D'Yakonov Laminar Turbulent (k--E)

1. INTRODUCTION

A major factor influencing the speed and convergence of finite volume discretization methods
is the handling of the pressure-velocity (PV) coupling that links the momentum and mass
conservation equations."' Research to improve this PV coupling has resulted in developments
that claim to improve basic solution algorithms such as the SIMPLE method of Patankar and
S ~ a l d i n g . ~ Examples include SIMPLER: SIMPLE-C5 and FIMOSE.' These methods can
solve the discretized equations either iteratively or sequentially. Alternatively, coupled methods
can be used whereby the momentum and continuity equations are solved simultaneously using
direct solvers (see e.g. Reference 6).

The applicability of the penalty function method to the solution of the Navier-Stokes
equations has been demonstrated using finite element methods;'*' however, information
on the use of penalty functions with finite difference and finite volume methods is scarce.
Temam' showed that a finite difference method using a penalty formulation yields correct
solutions as the penalty parameter increases to inifinity and the grid spacing decreases to
zero. Braaten' presents encouraging results using a penalty function, finite volume method
with a coupled solution algorithm. De Bremaecker" presented results for a finite difference
method using a penalty function and demonstrated that the method can converge for a cavity
flow at least.

* Now at Alcan International Ltd., Kingston Research and Development Centre, Kingston, Ont., Canada
t Author to whom correspondence should be addressed.

CCC 027 1-209 1/94/080733-14
0 1994 by John Wiley & Sons, Ltd.

Received 29 January 1992
Revised 18 October 1993

734 J. SIMONEAU AND A. POLLARD

Similar to the penalty function method is the artificial compressibility method.’ There is
some controversy as to the strict equivalence of the two method^.'^.'^ Examples of the use of
this method can be found in Reference 15.

The present paper describes the incorporation of penalty functions (which addresses the
pressure-velocity coupling) into a finite volume code. The resulting equation sets are solved
using two approaches: (i) an iterative or sequential solution method and (ii) coupled methods
that link directly, through a solver or matrix operator, the velocities obtained from the
application of penalty functions. The resulting methods are applied to both laminar and turbulent
flows. The results are compared with those obtained using a standard finite volume solution
algorithm.

2. THE PENALTY FUNCTION METHOD

Two-dimensional, incompressible, steady and isothermal fluid flows without body forces are
governed by a set of differential equations where conservation of mass is ensured by

au av
ax a y
- + - = o

and conservation of momentum is governed by

au2 auv ap 1 a2u azu
ax ay ax Re (ax2 ay2)

auv av2 ap 1 a*v a2v

ax ay ay Re (ax2 aY2).

-+-=-- +- -+ - ,

-+ -=- -+- -+- (3)

These equations are written here in their non-dimensional two-dimensional conservative form
with

where V and Y are defined similarly and uo and I, are reference values defined for a particular
flow.

The penalty function method was first introduced in the field of constrained minimization for
the problem of a membrane under equilibrium, where the functional to be minimized is replaced
by a modified functional containing a so-called penalty term, which acts to enforce the constraint
indirectly.’ In fluid mechanics, when the penalty function method is applied to the functional
minimization associated with the Stokes problem of a flow at low velocity, the continuity
equation is replaced by a slightly ‘penalized’ continuity equation.’ The two-dimensional form is

au av 1 + - = - - p -
ax a y A *

(4)

The non-dimensional penalty parameter A is a large positiveI4 arbitrary constant (typically
of order 10’) ensuring that equation (4) is almost identical to equation (1). The same expression
for pressure, equation (4), can be used in conjunction with the Navier-Stokes equations even if,
unlike the Stokes problem, no functional form for them is known. Equation (4) provides an
explicit expression between pressure and velocity. It should be noted that equation (4) may

PENALTY FUNCTION FINITE VOLUME METHODS 735

provide an oscillatory pressure field.I6 However, in all the calculations to be presented, the
pressure fields obtained are exactly equal to those obtained from other methods, none of which
displayed any ‘wiggles’.

When the pressure terms in the standard Navier-Stokes equations (2) and (3) are replaced
by equation (4), the ‘penalized’ Navier-Stokes equations are obtained. In non-dimensional,
conservative, Cartesian form these are

The number of differential equations required to simulate a two-dimensional fluid flow is
therefore reduced by one with only U and V as unknowns. Once the velocity field is known,
the pressure field can be calculated using equation (4).

3. FINITE VOLUME DISCRETIZATION

As can be seen in equations (5) and (6), penalized Navier-Stokes equations have the same
convection and diffusion terms as equations (2) and (3), implying that ‘standard’ finite volume
discretization methods can be applied without modification; attention only needs to be paid to
the pressure terms.

To obtain their finite volume discretized form, equations (2) and (3) are integrated over a
control volume. A staggered grid is used. The discretization of the integrated equation for the
U-momentum gives

apU, = aEUE + awUw + a N U N + asus + b, (7)

where the source term is

b = (Pp - Pe)AY; (8)

The notation utilized is illustrated in Figure 1. The coefficients are calculated using the hybrid
scheme of Spalding.” Of course, other schemes can be utilized. Equations of a similar nature
can be obtained for other co-ordinate directions.

The same discretization approach can be applied to equations (5) and (6). With reference to
Figure 1, the resulting discretized equation is of the same form as equation (7), except that the
source term (8) now depends on velocities. It is

Because the U-velocity variables in equation (9) already appear elsewhere in equation (7), source
term linearization with a redistribution of terms can result in a more implicit set of discretized
equations. A total of five variants involving up to 21 velocity components have been derived
and tested.14 However, that given below was found to be generally the most efficacious. For the
penalized U-momentum the discretized equation is

736 J. SIMONEAU AND A. POLLARD

0

I
I

0 0 .

u s

6% 6 x e
++I

Figure 1 . Finite volume typical U-velocity cell, notation and dimensions

with coefficients and source terms defined as

where those coefficients appearing without the tilde are from equation (7). An implicit formula-
tion for the V-momentum can be written in a similar manner.

The iterative solution process for both equations is terminated when the normalized residual
R , < lod5 for both variables. This practice has been used extensively (see e.g. References 2 and
5). The velocity and pressure fields resulting from this choice of residual level have been found
to accurately represent the flow situation under consideration.

4. SOLUTION ALGORITHMS

4.1. Penalty sequential algorithm (PENSA)

Equation (10) and its V-momentum counterpart can be solved at each grid point for U and
V in sequence, one after the other. One example of this approach, called PENSA, is outlined
below. It differs from more traditional algorithms in that no pressure correction equation is
solved. The steps are as follows.

PENALTY FUNCTION FINITE VOLUME METHODS 737

1. Calculate coefficients and source terms for the U-momentum at all grid points.
2. Solve this equation for the U-velocity components with an appropriate solver.
3. Calculate coefficients and source terms for the V-momentum equation at all grid points

4. Solve this equation for the V-velocity components with an appropriate solver.
5. Using new V's from above, repeat all steps until a converged solution is obtained.
6. Calculate the pressure field using a discretized form of equation (4).

The solver used in this study is the well-known TDMA (tridiagonal matrix algorithm). This
solver is adequate and no other more sophisticated solver is necessary (e.g. the strongly implicit
methods of either Stone'* or Schneider and ZedanL9). No special treatment is required for the
boundary conditions. PENSA requires less computer storage than the SIMPLE algorithm and
its variants because neither pressure nor its correction are needed.

using new in-store values for U obtained in the previous step.

4.2. Testing PENSA

The performance of PENSA is briefly compared with that of a tuned SIMPLE-C algorithm
in this section. The tuning of the SIMPLE-C algorithm involved searching for the minimum
CPU times for a given grid, the optimum relaxation factors and the optimum overrelaxation
parameter in the TDMA solver.' The problems considered are laminar flow in a square cavity
with a sliding top and plane, laminar channel flow, both at Re = 100. Grid sizes of 10 x 10 and
15 x 8 were used for the cavity and channel flows respectively.

The results are given in Table I. As the penalty parameter is increased, the execution time
and the number of iterations required to reach the R, < limit for each equation also
increase. Furthermore, the accuracy of the solution also increases with increasing A, as indicated
by the reference values for velocity and pressure listed in the table. As noted above, the accuracy
is relative to the results obtained using the tuned SIMPLE-C algorithm. Indeed, for all penalty

Table I. Comparison of SIMPLE-C and PENSA for square cavity flow (10 x 10 grid)
and channel flow (15 x 8 grid). Urcf and Prcf are reference velocity and pressure at grid
points (i, j) 14, 2 (channel) and 5, 9 and 9, 9 for velocity and pressure respectively

(cavity)14

a No. of iterations CPU time (s) Uref Pref

Cavity flow
SI M PLE-C - 42 9-2 0.5534 0-2925

PENSA 1 153 13.2 0.5556 0.2845
10 1559 103.2 0.5536 0.2918
100 15521 999.1 05534 0.2924

lo00 155140 99 17.4 0.5534 0-2925

Channel flow
- SI M PL E-C 37 10.6 1.469 - 1.013

PENSA 10 181 18.0 1.1 14 - 0532
100 1594 131.1 1 406 - 0.920
lo00 15589 1245.2 1.462 - 1.003
loo00 155540 12479.0 1.468 - 1.012

738 J. SIMONEAU AND A. POLLARD

finite volume simulations presented, both the velocity and pressure fields were identical with the
SIMPLE-C solution to four significant digits. Note again that the pressure fields displayed no
oscillations as a result of applying equation (4).

The coupling between the momentum equations using PENSA is such that under relaxation
did not aid convergence; however, slight overrelaxation improves the performance s ~ m e w h a t . ' ~
To assist in accelerating PENSA, a variable A was introduced; however, this proved generally
fruitless. This finding is not in accord with Bertin and Ozoe," who applied a stepwise increase
in 1 in a finite element simulation of natural convection flows and found that convergence rates
became enhanced with respect to those obtained using a fixed 1.

From Table I it is clear that as the penalty parameter increases, PENSA becomes exorbitantly
expensive relative to the SIMPLE-C algorithm. The reason can be traced to the weak U-V
coupling in PENSA.I4 PENSA in its present form is thus considered inappropriate for fluid
flow calculations.

4.3. Penalty coupled algorithm (PENCA)

solver can be used on the combined equations. The system of equations to be solved is
To ensure strong coupling between the penalized forms of the momentum equation, a direct

CAl{u} = {bl, (11)

where [A] is the matrix of coefficients and source terms for all equations, {u} is the velocity
vector containing both U and V-velocity variables and {b} contains boundary conditions. This
system can be replaced with advantage by

[AllAu} = - CAI(u*}, (12)

where (u*} are velocities resulting from a previous iteration and {Au} = {u} - {u*} . The
right-hand side of equation (12) vanishes when {u* } becomes the exact solution and the resulting
{Au} will also vanish.

To solve either equation (1 1) or equation (12), various approaches were tested; however, when
solving equation (12), the right-hand side quickly becomes small and the coefficients in [A] have
values acceptably close to their final value regardless of the solver used. Since most direct solvers
use an LU decomposition, there may be no need to continue factorization of [A]; after a few
iterations it can remain fixed. The following system of equations results:

where [A]" contains coefficients that remain fixed or frozen and which can be used for the
remaining iterations. This was first proposed by D'Yakonov'' and, when used subsequently in
this paper, will be called D'Yakonov iteration. Equation (13) can be solved more rapidly than
equation (12) and the accuracy of the solution is not affected, because convergence is still
evaluated using updated coefficients that appear in [A]. For the results presented here [A]" was
fixed at the optimum stage in the iteration cycle for all flow test cases; this occurred after only
a few iterations (i.e, from two to five for laminar flow and up to 22 for turbulent flow).

4.4. Selection of the solver for PENCA

In contrast with SIMPLE-C where a simple line solver is efficient, it was found that other
approaches would be necessary for PENCA.I4 Three types of solvers are considered : iterative,
direct and direct with iterative improvements. 'Iterative improvements' means that the solver

PENALTY FUNCTION FINITE VOLUME METHODS 739

itself, once presented with equation (1 l), actually performs several inner iterations of a direct
solver on the system given by equation (12).

Consider a domain of interest overlaid with control volumes. The order in which control
volumes are visited can vary. Here two ways are presented. As shown in Figure 2(a) the
numbering of the velocities can first proceed with all U-velocities followed by all V-velocities;
alternatively, the velocities can be visited and numbered sequentially without regard to specific
velocities, as shown in Figure 2(b). A sparse matrix system results if the practice illustrated in
Figure 2(a) is used, whereas using the practice shown in Figure 2(b) gives rise to a banded matrix
system. These matrix systems are shown in Figures 3(a) and 3(b) respectively, where P, N, etc.
represent coefficients ap, uN, etc., A is the penalty parameter and R is the right-hand side of the
equation being solved.

Figure 2(a). Velocity numbering for a sparse matrix

15
4 . 16

4
17
4

$11 012 013 914

- 8 4 0 4 -

Figure 2(b). Velocity numbering for a banded matrix

740

-
R l
R 2

R 3
R,
RS

R l
RE

RS

R l O

R l I
R12

R 6

R13

R14

R15

R16

R17

R1e
R l S

R 2 0

Rz I

R22

R 2 3

p24-

J. SIMONEAU AND A. POLLARD
I 2 3 4 5 6 7 8 9 10 I 1 12 13 1 4 15 16 17 18 192021 222324

Figure 3(a). Sparse matrix system; note location of 1

I 2 3 4 5 6 7 E 9 10 I 1 12 13 14 15 16 17 18 19 20 21 22 23 24

X

- -
U l
u 2

u3
v 4

VS

V l

U E

U S

UlO
V l l ' 12 " 13

' 6

14

"15

'16

U l l
18 ' 19

20

v 2 1

u22

9 i
u23

u4

u7

uE

"1 I

"12

'6

vl 3

vl 4

v15

'1 6

Vl l
Vl e
Vl 9

v 2 0

v2 I

v22

v23

'2 4 - .
Figure 3(b). Banded matrix system; note location of 1

PENALTY FUNCTION FINITE VOLUME METHODS 74 1

It is significant that the matrix structure permits the use of LU decomposition methods such
as those found in the IMSL library, e.g. IMSL-LEQT2B and IMSL-LEQT2F (B, banded; F
full), and of biconjugate gradient methods (ILUBCG2 and ILUCG2)22, which include LU
preconditioning. Note that the results from ILUCG2 are not presented here.14

Direct solvers considered include those from the Yale Sparse Matrix Package (YSMP),23-24
which use an LU decomposition with compact storage but no pivoting. Compact storage is
achieved by storing only the non-zero coefficients and using an efficient accounting system to
store their location within [A]. In addition, a storage vector is reserved for the fill-in terms
created during the decomposition process. This YSMP solver has been used in the p a ~ t . ’ ~ , ~ ’
The general solution process of YSMP consists of optimal automatic reordering of [A] to
optimize the elimination process, symbolic decomposition to determine where the fill-in terms
will occur during numerical decomposition, numerical decomposition whereby [A] is de-
composed into L-D-U matrices, and numerical solution consisting of forward and backward
substitution. The first two steps need be done only once for a given system of equations. The
efficiency of using automatic reordering was tested for both banded and sparse matrices and
with and without D’Yakonov iterations. The results can be found in Tables I1 and 111. It can
be seen that automatic reordering applied to a banded matrix system using D’Yakonov iterations
yields solutions in times much shorter than other methods.

The direct and semi-iterative solvers all terminate operation when the normalized residuals
for the penalized momentum equations reach R, < lop5. A sample of the relative performance
of these solvers (YSMP, IMSL, conjugate gradient (CG),26 etc.), including for comparison a line

Table 11. Execution times (seconds), PENCA, using YSMP without DYa-
konov iterations, flow in a square cavity with a sliding top, Re = 100

No reordering With reordering

Grid Sparse [A] Banded [A] Sparse [A] Banded [A]

10 x 10 37.9 7.7 5.9 5.7
12 x 12 141.6 17.0 11.9 11.5
14 x 14 419.1 34.4 23.3 20,4
18 x 18 1 15.3 57-8 71.0
22 x 22 283.5 152.9 136.7
30 x 30 498.1 434.1

-

-

- -

Table 111. Execution times (seconds), PENCA, using YSMP with DYako-
nov iterations, flow in a square cavity with a sliding top, Re = 100

No reordering With reordering

Grid Sparse [A] Banded [A] Sparse [A] Banded [A]
~~

10 x 10 17.6 4.5 3.9 3.8
12 x 12 61.2 8.9 7.3 6.8
14 x 14 174.6 17.1 12.6 11.6
18 x 18 48.8 27.6 32.6
22 x 22 115.1 67.1 61.2
30 x 30 206.1 181.2

-

-

- -

742 I. SIMONEAU AND A. POLLARD

Table IV. Execution times (seconds) using various solvers for simulating laminar flow in a square cavity
with moving lid using PENCA

~~

Grid 1 IMSL-LEQT2F IMSL-LEQT2B YSMP CG ILUBCG2 Gauss-Seidel

6 x 6 10' 2 4 -
102 -
103 2.4 -
104
105 2.4 11.3 - 4 4 9.4 -

102 -
103 106.7 - 3.5 281.1 - -

104 - - 275.7 -

- - 4.3 10.9
- 5.5 5.5 96.1
- 7.4 6.2 946.2

-

- - 9.3 - - -

- 155.7
- 253.6 - 1525.9

10 x 10 10' 107.3 3.5 208.8 -

-

- -

105 106.9 107.6 3-4 422.3 Diverges -

iterative Gauss-Seidel solver, is given in Table IV. An examination of Table IV reveals that all
entries were not attempted, because it became clear that some solvers were either overly expensive
or no solution could be obtained. It should also be noted from Table IV that the CPU time
required by some solvers was extremely sensitive to the value of 1 as well as the grid density;
although not shown, the only solver that displayed little sensitivity to the grid size was YSMP.I4
It is important to note that Table IV gives convergence histories that meet the convergence
criterion R , < that for 12 lo5 the results become insensitive to the value of I and that
the results agree to within four significant digits with those obtained using SIMPLE-C.

The IMSL-based solvers were found to be reasonably robust but, relative to the YSMP direct
solver, intolerably slow. The most efficient solver as a function of the magnitude of the penalty
parameter A can be readily identified as the YSMP solver. The conjugate gradient solvers
performed poorly because of lack of diagonal dominance in the matrix [A].14

From the data contained in Tables 11-IV it is clear that reordering a banded matrix combined
with D'Yakonov iterations is the most efficient combination for the YSMP solver.

5. LAMINAR AND TURBULENT FLOW TEST CASES

It is clear from Section 4.2 that PENSA is too CPU-bound. PENCA with non-symmetric YSMP
and automatic ordering applied to a banded matrix is the fastest and is shown to be faster than
a tuned SIMPLE-type algorithm (compare results for flow in a square cavity, 10 x 10 grid: from
Table I SIMPLE-C requires 9.2 s, while from Table I11 PENCA requires only 3.8 s). Below,
various laminar and turbulent flows are calculated to see whether this finding is general.

Four test cases are considered for both laminar and turbulent flows. The turbulence model
is the high-Reynolds-number form of the k-E model.*' Wall functions are used to bridge the
viscous near-wall region. PENCA (1 = lo5 always) combined with the k-E model is referred to
as PENCAKE, whereby the equations for turbulence are solved sequentially using a line-by-line
TDMA solver. The four cases, all of which use Re = pI,uo/p, are as follows:

(1) square lid-driven cavity flow, sides of dimension I,, Re = 100 (laminar) and 10,000

(2) developing flow in a plane channel with walls separated by distance I,, Re = 100 (laminar)
(turbulent)

and 10,000 (turbulent), both with symmetry imposed at the channel centreline

PENALTY FUNCTION FINITE VOLUME METHODS 743

(3) plane jet impingement upon a flat wall, Re = 100 (laminar) and 5000 (turbulent); the
domain is 131, long and 2-61, high and the jet thickness is I , with symmetry imposed along
the jet centreline

(4) developing flow in a plane channel with a 2: 1 sudden expansion, Re = 100 (laminar) and
5000 (turbulent); the domain is 810 long and 21, high with fluid entering through an
entrance 1, high and symmetry imposed along the axial centreline.

Three grid densities are used for each configuration, as listed in Table V. Inlet conditions are
for uniform flow; outlet conditions are specified as zero axial gradient; wall conditions are either
zero slip or wall functions. Turbulence inlet conditions are k = 0.005~; and E = C,k''s/0~03(1,/2).
Note that for the turbulence equations the underrelaxation was optimized for all cases. Tests
indicate that mass flow rate corrections (see e.g. Reference 2) are beneficial in reducing the CPU
time for all PENCA and SIMPLE-C.

Execution times for the four flows considered are given in Table VI. It is clear that PENCA
and PENCAKE give solutions generally in less than half the time required by the tuned

Table V. Grid sizes used for laminar and turbulent flow investi-
gations. Numbers indicate the grid nodes in the axial x cross-

stream directions
~~

Flow case Coarse grid Medium grid Fine grid

Cavity 10 x 10 22 x 22 30 x 30
Channel 15 x 8 30 x 16 45 x 20
Impingement 8 x 15 17 x 28 22 x 41
Expansion 15 x 8 30 x 16 45 x 20

Table VI. Execution times (seconds) for optimally configured simulations. Penalty implies use of PENCA
for laminar flows and PENCAKE for turbulent flows. Penalty parameter is lo5 for all cases

Laminar (L) or Penalty (P) or
Flow case turbulent (T) SIMPLE-C (S) Coarse grid Medium grid Fine grid

Cavity L
L
T
T

Channel L
L
T
T

L
T
T

L
T
T

Jet impingement L

Sudden expansion L

P
S
P
S

P
S
P
S

P
S
P
S

P
S
P
S

5.1
9.4

11.7
50-0

7.0
10.6
13.0
16.5

9-6
39.2
30.6
88.2
7.9

34.5
30.9
68.3

47.3
93.6

3003
50 1.6

51.5
106.0
86.0

151.4

806
276.7
289.1
634.5
58.9

309.4
191.5
531.3

131.6
249.8
634.3

1403.0

131.6
382.4
21 1.4
608.6

2664
651.7

1 1 12.0
1246.6
144.2
854.5
546.0

1620.9

744 J. SIMONEAU AND A. POLLARD

SIMPLE-C algorithm. Furthermore, as the grid is refined, it is apparent that PENCA and
PENCAKE give better relative performance with increasing grid densities. The relatively high
CPU times required to solve the jet impingement problem using PENCAKE are due to the
large number of iterations required prior to invoking D'Yakonov iterations. The execution times
are of course dependent upon the number of equations to be solved and the time required to
establish virtual storage within the YSMP solver.

The data from Table VI do not indicate the rate at which the solutions can be obtained. An
example of the residual reduction for laminar flow in a square cavity, coarse grid (see Table V)
is given in Figure 4, where results for PENSA, PENCA and SIMPLE-C are displayed. It is
quite evident that PENCA achieves almost one order of magnitude reduction in the residual
for every iteration while other algorithms require at least 10 iterations. An interesting comparison
is the effect of the stringency of the convergence criterion on the performance of the algorithms.
For the cases considered so far the residual was R, < lop5, where $J refers to the equation being
solved. If R, d is used on medium-sized grids (see Table V) to increase the accuracy to
more than four significant digits, the percentage increase in execution time for SIMPLE-C is,
on average for all four cases, more than twice that for PENCA and PENCAKE.I4 Note that
again the velocity and pressure fields obtained are exactly the same regardless of the algorithm
used.

It has been foundI4 that in these tests with a YSMP solver the magnitude of 1 has little effect
on the number of iterations required to obtain solutions; moreover, the CPU time is also
essentially independent of A. The storage requirements for PENCAKE and SIMPLE-C are given
in Table VII, from which it is clear that the storage requirements depend almost linearly on the
grid size for all methods, but for the penalty function formulations the storage overhead is on
average about five times that of a SIMPLE-type algorithm. Also given in the table is the storage
required for the fill-in terms of the YSMP solver. That is, YSMP requires storage for the non-zero
elements in [A]. It also requires a storage vector to handle the factorization.

Other tests have been performed to evaluate PENCAKE.I4 These include effects of grid aspect
ratios, convergence criterion, bandwidth of [A], optimum number of factorizations of [A] prior
to invoking D'Yakonov iterations, optimum underrelaxation parameters in SIMPLE-C, costs

A PENSA h = l
+ PENSA h - 1 0

PENCA a = 100,ooo
102

0 10 20 30 40 50
ITERATIONS

Figure 4. Residual reduction for coarse grid, laminar flow in a square cavity as a function of iteration count

PENALTY FUNCTION FINITE VOLUME METHODS 745

Table VII. Total and fill-in storage (kilowords) required for various
grid densities. Note that grid density groupings have products similar in

magnitude

PENCA or PENCAKE SIMPLE-C

Grid Storage Fill-in Storage Fill-in

10 x 10 20 9.7 9 0
15 x 8 22 11.4 11 0
8 x 15 23 11.8 11 0

17 x 28 163 1 16.3 41 0
3 0 x 16 162 1 16-0 41 0
22 x 22 177 129.1 42 0

45 x 20 383 273.2 76 0
30 x 30 390 3 17.6 76 0
22 x 41 388 303.0 76 0

including both execution times and storage costs using charging algorithms from different
Canadian universities, etc.

6. CONCLUSIONS AND RECOMMENDATIONS

The work presented here compares the execution time and storage requirements of the
well-known SIMPLE-C algorithm with those of the new algorithms PENSA and PENCA, all
of which have been applied to both laminar and turbulent flows. The following conclusions can
be drawn.

1. A penalty-function, finite volume method combined with a suitable solver can be used to
simulate both laminar and turbulent fluid flows with similar accuracy to that obtained with
a conventional finite volume method.

2. A sequential penalty function formulation (PENSA) is unacceptably slow for fluid flow
calculations.

3. Gauss-Seidel, conjugate gradient, preconditioned conjugate gradient and IMSL direct
solvers are too slow and/or require excessive computer storage when applied to the coupled
system of penalized form of the Navier-Stokes equations.

4. YSMP with automatic reordering of a banded matrix is adequate for the efficient solution
of the flow with the penalty coupled algorithm PENCA.

5. PENCA and PENCAKE are faster than a tuned SIMPLE-C algorithm.
6. The SIMPLE-C algorithm requires less storage than PENCA or PENCAKE.

It is recommended that PENSA not be abandoned: ways need to be found to increase the
U-V coupling. A custom solver that uses to advantage the sparse and banded nature of the
coefficient matrix needs to be devised. Extensions of the method to three-dimensional flows, flows
with buoyancy and the inclusion of higher-order difference schemes should be given priority to
further evaluate this method.

746 J. SIMONEAU AND A. POLLARD

ACKNOWLEDGEMENTS

The authors would like to thank the Royal Military College (RMC) of Canada for their support
while J.S. was a faculty member. Support for this research was also provided by the Natural
Science and Engineering Research Council of Canada through grants to A.P. All the computa-
tions were performed on the RMC Honeywell DPS-8/70, running FORTRAN 77, release
DOO, with automatic double precision.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

REFERENCES

G. D. Raithby and G . E. Schneider, ‘Numerical solution of problems in incompressible fluid flow: treatment of the
velocity-pressure coupling’, Numer. Heat Transfer, 2, 417440 (1979).
B. R. Latimer and A. Pollard, ‘Comparison of pressure-velocity coupling solution algorithms’, Numer. Heat Transfer,

S. V. Patankar and D. B. Spalding, ‘A calculation procedure for heat, mass and momentum transfer in three-
dimensional parabolic flows’, Int. J. Heat Mass Transfer, 15, 1787-1806 (1972).
S. V. Patankar, ‘ A calculation procedure for two-dimensional elliptic situations’, Numer. Heat Transfer, 4, 409425
(1981).
J. P. Van Doormaal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid
flows’, Numer. Heat Transfer, 7, 147--163 (1984).
S. P. Vanka, ‘Block-implicit calculation of steady turbulent recirculating flows’, Int. J. Heat Mass Transfer, 28,

J. N. Reddy, ‘On penalty function methods in the finite element analysis of flow problems’, Int. j. numer. methods
fluids, 2, 151-171 (1985).
J. N. Reddy, ‘Penalty-finite-element analysis of 3-D Navier-Stokes equations’, Compur. Methods Appl. Mech. Eng.,
35, 87-106 (1985).
R. Temam, ‘Une methode d’approximation de la solution des equations de Navier-Stokes’, Bull. SOC. M a d Fr.,

M. E. Braaten, ‘Development and evaluation of iterative and direct methods for the solution of the equations
governing recirculating flows’, Ph. D Thesis, University of Minnesota, 1985.
J. C. De Bremaecker, ‘Penalty solution of the Navier-Stokes equations’, Comput. Fluids, 15, 275-280 (1987).
A. J. Chorin, ‘A numerical method for solving incompressible viscous flow problems’, J. Comput. Phys., 2, 12-26
(1967).
T. M. Shih, C. H. Tan and B. C. Hwang, ‘Equivalence of artificial compressibility method and penalty-function
method’, Numer. Heat Transfer, 15, 127-130 (1989).
J. Simoneau, ‘The numerical calculation of laminar and turbulent flows using penalty-function finite-volume
methods’, Ph. D. Thesis, Department of Mechanical Engineering, Queen’s University at Kingston, 1990.
S. E. Rogers and D. Kwak, ‘Upwind differencing scheme for time-accurate incompressible Navier-Stokes equations’,

T. J. R. Hughes, W. K. Liu and A. Brooks, ‘Finite element analysis of incompressible viscous flows by penalty
function formulation’, J. Compuf. Phys., 30, 1-60 (1979).
D. B. Spalding, ‘A novel finite difference formulation for differential expressions involving both first and second
derivatives’, Int. j. numer. methods eng., 4, 551-559 (1972).
H. L. Stone, ‘Iterative solution of implicit approximations of multidimensional partial equations’, SIAM J. Numer.
Anal., 5, 53C558 (1968).
G. E. Schneider and M. Zedan, ‘A modified strongly implicit procedure for the numerical solution of field problems’,
Numer. Heat Transfer, 4, 1-19 (1981).
H. Bertin and H. Ozoe, ‘Technique for rapid convergence of the penalty finite-element method with a modified
Galerkin scheme and its application to natural convection‘, Nurner. Hear Transfer, 10, 31 1-325 (1986).
E. G. D’Yakonov, ‘An iterative method for solving systems of finite difference equations’, Dokl. Akad. Nauk SSSR,
138, 522-525 (1961).
A. E. Koniges and D. V. Anderson, ‘ILUBCG2: a preconditioned biconjugate gradient routine for the solution of
linear asymmetric matrix equations arising from 9-point discretisation’, Comput. Phys. Commun., 43,297-302 (1987).
S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman, ‘Yale Sparse Matrix Package I-The symmetric
codes’, Rep. 112, Department of Computer Science, Yale University, 1977.
S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman, ‘Yale Sparse Matrix Package 11-The
non-symmetric codes’, Rep. I I 4 , Department of Computer Science, Yale University, 1977.
S. P. Vanka and G. K. Leaf, ’Fully-coupled solution of pressure-linked fluid flow equations’, Rep. ANL-83-73,
Argonne National Laboratory, University of Chicago, 1983.
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes-The Arr of Scienrific
Computing, Cambridge University Press, Cambridge 1986.
B. E. Launder and D. B. Spalding, ‘The numerical computation of turbulent flows’, Comput. Merhods Appl. Mech.
Eng., 3, 269-289 (1974).

8, 635-652 (1985).

2093-2103 (1985).

96, 115-152 (1968).

AIAA J., 28, 253-262 (1990).

