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SUMMARY 
A penalty function, finite volume method is described for two-dimensional laminar and turbulent flows. 
Turbulence is modelled using the k--E model. The governing equations are discretized and the resulting 
algebraic equations are solved using both sequential and coupled methods. The performance of these 
methods is gauged with reference to a tuned SIMPLE-C algorithm. Flows considered are a square cavity 
with a sliding top, a plane channel flow, a plane jet impingement and a plane channel with a sudden 
expansion. A sequential method is employed, which uses a variety of dicretization practices, but is found 
to be extremely slow to converge; a coupled method, evaluated using a variety of matrix solvers, converges 
rapidly but, relative to the sequential approach, requires larger memory. 

KEY WORDS Penalty function Finite volume Direct Solver D'Yakonov Laminar Turbulent (k--E) 

1. INTRODUCTION 

A major factor influencing the speed and convergence of finite volume discretization methods 
is the handling of the pressure-velocity (PV) coupling that links the momentum and mass 
conservation equations."' Research to improve this PV coupling has resulted in developments 
that claim to improve basic solution algorithms such as the SIMPLE method of Patankar and 
S ~ a l d i n g . ~  Examples include SIMPLER: SIMPLE-C5 and FIMOSE.' These methods can 
solve the discretized equations either iteratively or sequentially. Alternatively, coupled methods 
can be used whereby the momentum and continuity equations are solved simultaneously using 
direct solvers (see e.g. Reference 6). 

The applicability of the penalty function method to the solution of the Navier-Stokes 
equations has been demonstrated using finite element methods;'*' however, information 
on the use of penalty functions with finite difference and finite volume methods is scarce. 
Temam' showed that a finite difference method using a penalty formulation yields correct 
solutions as the penalty parameter increases to inifinity and the grid spacing decreases to 
zero. Braaten' presents encouraging results using a penalty function, finite volume method 
with a coupled solution algorithm. De Bremaecker" presented results for a finite difference 
method using a penalty function and demonstrated that the method can converge for a cavity 
flow at least. 
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Similar to the penalty function method is the artificial compressibility method.’ There is 
some controversy as to the strict equivalence of the two  method^.'^.'^ Examples of the use of 
this method can be found in Reference 15. 

The present paper describes the incorporation of penalty functions (which addresses the 
pressure-velocity coupling) into a finite volume code. The resulting equation sets are solved 
using two approaches: (i) an iterative or sequential solution method and (ii) coupled methods 
that link directly, through a solver or matrix operator, the velocities obtained from the 
application of penalty functions. The resulting methods are applied to both laminar and turbulent 
flows. The results are compared with those obtained using a standard finite volume solution 
algorithm. 

2. THE PENALTY FUNCTION METHOD 

Two-dimensional, incompressible, steady and isothermal fluid flows without body forces are 
governed by a set of differential equations where conservation of mass is ensured by 

au av 
ax a y  
- + - = o  

and conservation of momentum is governed by 

au2 auv ap 1 a2u azu 
ax ay ax Re (ax2 ay2) 

auv av2 ap 1 a*v a2v 

ax ay ay Re (ax2 aY2). 

-+-=--  +- -+ - ,  

-+ -=- -+-  -+- (3) 

These equations are written here in their non-dimensional two-dimensional conservative form 
with 

where V and Y are defined similarly and uo and I, are reference values defined for a particular 
flow. 

The penalty function method was first introduced in the field of constrained minimization for 
the problem of a membrane under equilibrium, where the functional to be minimized is replaced 
by a modified functional containing a so-called penalty term, which acts to enforce the constraint 
indirectly.’ In fluid mechanics, when the penalty function method is applied to the functional 
minimization associated with the Stokes problem of a flow at low velocity, the continuity 
equation is replaced by a slightly ‘penalized’ continuity equation.’ The two-dimensional form is 

au av 1 + - = - - p  - 
ax a y  A * 

(4) 

The non-dimensional penalty parameter A is a large positiveI4 arbitrary constant (typically 
of order 10’) ensuring that equation (4) is almost identical to equation (1). The same expression 
for pressure, equation (4), can be used in conjunction with the Navier-Stokes equations even if, 
unlike the Stokes problem, no functional form for them is known. Equation (4) provides an 
explicit expression between pressure and velocity. It should be noted that equation (4) may 
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provide an oscillatory pressure field.I6 However, in all the calculations to be presented, the 
pressure fields obtained are exactly equal to those obtained from other methods, none of which 
displayed any ‘wiggles’. 

When the pressure terms in the standard Navier-Stokes equations (2) and (3) are replaced 
by equation (4), the ‘penalized’ Navier-Stokes equations are obtained. In non-dimensional, 
conservative, Cartesian form these are 

The number of differential equations required to simulate a two-dimensional fluid flow is 
therefore reduced by one with only U and V as unknowns. Once the velocity field is known, 
the pressure field can be calculated using equation (4). 

3. FINITE VOLUME DISCRETIZATION 

As can be seen in equations ( 5 )  and (6), penalized Navier-Stokes equations have the same 
convection and diffusion terms as equations (2) and (3), implying that ‘standard’ finite volume 
discretization methods can be applied without modification; attention only needs to be paid to 
the pressure terms. 

To obtain their finite volume discretized form, equations (2) and (3) are integrated over a 
control volume. A staggered grid is used. The discretization of the integrated equation for the 
U-momentum gives 

apU, = aEUE + awUw + a N U N  + asus + b, (7) 

where the source term is 

b = (Pp - Pe)AY; (8) 

The notation utilized is illustrated in Figure 1. The coefficients are calculated using the hybrid 
scheme of Spalding.” Of course, other schemes can be utilized. Equations of a similar nature 
can be obtained for other co-ordinate directions. 

The same discretization approach can be applied to equations ( 5 )  and (6). With reference to 
Figure 1, the resulting discretized equation is of the same form as equation (7), except that the 
source term (8) now depends on velocities. It is 

Because the U-velocity variables in equation (9) already appear elsewhere in equation (7), source 
term linearization with a redistribution of terms can result in a more implicit set of discretized 
equations. A total of five variants involving up to 21 velocity components have been derived 
and tested.14 However, that given below was found to be generally the most efficacious. For the 
penalized U-momentum the discretized equation is 
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Figure 1 .  Finite volume typical U-velocity cell, notation and dimensions 

with coefficients and source terms defined as 

where those coefficients appearing without the tilde are from equation (7). An implicit formula- 
tion for the V-momentum can be written in a similar manner. 

The iterative solution process for both equations is terminated when the normalized residual 
R ,  < lod5 for both variables. This practice has been used extensively (see e.g. References 2 and 
5). The velocity and pressure fields resulting from this choice of residual level have been found 
to accurately represent the flow situation under consideration. 

4. SOLUTION ALGORITHMS 

4.1. Penalty sequential algorithm (PENSA) 

Equation (10) and its V-momentum counterpart can be solved at  each grid point for U and 
V in sequence, one after the other. One example of this approach, called PENSA, is outlined 
below. It differs from more traditional algorithms in that no pressure correction equation is 
solved. The steps are as follows. 
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1. Calculate coefficients and source terms for the U-momentum at all grid points. 
2. Solve this equation for the U-velocity components with an appropriate solver. 
3. Calculate coefficients and source terms for the V-momentum equation at  all grid points 

4. Solve this equation for the V-velocity components with an appropriate solver. 
5. Using new V's from above, repeat all steps until a converged solution is obtained. 
6. Calculate the pressure field using a discretized form of equation (4). 

The solver used in this study is the well-known TDMA (tridiagonal matrix algorithm). This 
solver is adequate and no other more sophisticated solver is necessary (e.g. the strongly implicit 
methods of either Stone'* or Schneider and ZedanL9). No special treatment is required for the 
boundary conditions. PENSA requires less computer storage than the SIMPLE algorithm and 
its variants because neither pressure nor its correction are needed. 

using new in-store values for U obtained in the previous step. 

4.2. Testing PENSA 

The performance of PENSA is briefly compared with that of a tuned SIMPLE-C algorithm 
in this section. The tuning of the SIMPLE-C algorithm involved searching for the minimum 
CPU times for a given grid, the optimum relaxation factors and the optimum overrelaxation 
parameter in the TDMA solver.' The problems considered are laminar flow in a square cavity 
with a sliding top and plane, laminar channel flow, both at Re = 100. Grid sizes of 10 x 10 and 
15 x 8 were used for the cavity and channel flows respectively. 

The results are given in Table I. As the penalty parameter is increased, the execution time 
and the number of iterations required to reach the R,  < limit for each equation also 
increase. Furthermore, the accuracy of the solution also increases with increasing A, as indicated 
by the reference values for velocity and pressure listed in the table. As noted above, the accuracy 
is relative to the results obtained using the tuned SIMPLE-C algorithm. Indeed, for all penalty 

Table I. Comparison of SIMPLE-C and PENSA for square cavity flow (10 x 10 grid) 
and channel flow (15 x 8 grid). Urcf and Prcf are reference velocity and pressure at grid 
points (i, j )  14, 2 (channel) and 5, 9 and 9, 9 for velocity and pressure respectively 

(cavity)14 

a No. of iterations CPU time (s) Uref Pref 

Cavity flow 
SI M PLE-C - 42 9-2 0.5534 0-2925 

PENSA 1 153 13.2 0.5556 0.2845 
10 1559 103.2 0.5536 0.2918 
100 15521 999.1 05534 0.2924 

lo00 155140 99 17.4 0.5534 0-2925 

Channel flow 
- SI M PL E-C 37 10.6 1.469 - 1.013 

PENSA 10 181 18.0 1.1 14 - 0532 
100 1594 131.1 1 406 - 0.920 
lo00 15589 1245.2 1.462 - 1.003 
loo00 155540 12479.0 1.468 - 1.012 
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finite volume simulations presented, both the velocity and pressure fields were identical with the 
SIMPLE-C solution to four significant digits. Note again that the pressure fields displayed no 
oscillations as a result of applying equation (4). 

The coupling between the momentum equations using PENSA is such that under relaxation 
did not aid convergence; however, slight overrelaxation improves the performance s ~ m e w h a t . ' ~  
To assist in accelerating PENSA, a variable A was introduced; however, this proved generally 
fruitless. This finding is not in accord with Bertin and Ozoe," who applied a stepwise increase 
in 1 in a finite element simulation of natural convection flows and found that convergence rates 
became enhanced with respect to those obtained using a fixed 1. 

From Table I it is clear that as the penalty parameter increases, PENSA becomes exorbitantly 
expensive relative to the SIMPLE-C algorithm. The reason can be traced to the weak U-V 
coupling in PENSA.I4 PENSA in its present form is thus considered inappropriate for fluid 
flow calculations. 

4.3. Penalty coupled algorithm (PENCA) 

solver can be used on the combined equations. The system of equations to be solved is 
To ensure strong coupling between the penalized forms of the momentum equation, a direct 

CAl{u} = {bl, (11) 

where [A] is the matrix of coefficients and source terms for all equations, {u}  is the velocity 
vector containing both U and V-velocity variables and {b} contains boundary conditions. This 
system can be replaced with advantage by 

[AllAu} = - CAI(u*}, (12) 

where (u*}  are velocities resulting from a previous iteration and {Au} = {u}  - {u*} .  The 
right-hand side of equation (12) vanishes when {u* }  becomes the exact solution and the resulting 
{Au} will also vanish. 

To solve either equation (1  1) or equation (12), various approaches were tested; however, when 
solving equation (12), the right-hand side quickly becomes small and the coefficients in [A] have 
values acceptably close to their final value regardless of the solver used. Since most direct solvers 
use an LU decomposition, there may be no need to continue factorization of [A]; after a few 
iterations it can remain fixed. The following system of equations results: 

where [A]" contains coefficients that remain fixed or frozen and which can be used for the 
remaining iterations. This was first proposed by D'Yakonov'' and, when used subsequently in 
this paper, will be called D'Yakonov iteration. Equation (13) can be solved more rapidly than 
equation (12) and the accuracy of the solution is not affected, because convergence is still 
evaluated using updated coefficients that appear in [A]. For the results presented here [A]" was 
fixed at the optimum stage in the iteration cycle for all flow test cases; this occurred after only 
a few iterations (i.e, from two to five for laminar flow and up to 22 for turbulent flow). 

4.4. Selection of the solver for PENCA 

In contrast with SIMPLE-C where a simple line solver is efficient, it was found that other 
approaches would be necessary for PENCA.I4 Three types of solvers are considered : iterative, 
direct and direct with iterative improvements. 'Iterative improvements' means that the solver 



PENALTY FUNCTION FINITE VOLUME METHODS 739 

itself, once presented with equation (1 l), actually performs several inner iterations of a direct 
solver on the system given by equation (12). 

Consider a domain of interest overlaid with control volumes. The order in which control 
volumes are visited can vary. Here two ways are presented. As shown in Figure 2(a) the 
numbering of the velocities can first proceed with all U-velocities followed by all V-velocities; 
alternatively, the velocities can be visited and numbered sequentially without regard to specific 
velocities, as shown in Figure 2(b). A sparse matrix system results if the practice illustrated in 
Figure 2(a) is used, whereas using the practice shown in Figure 2(b) gives rise to a banded matrix 
system. These matrix systems are shown in Figures 3(a) and 3(b) respectively, where P, N, etc. 
represent coefficients ap, uN, etc., A is the penalty parameter and R is the right-hand side of the 
equation being solved. 

Figure 2(a). Velocity numbering for a sparse matrix 
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Figure 2(b). Velocity numbering for a banded matrix 
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Figure 3(a). Sparse matrix system; note location of 1 
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It is significant that the matrix structure permits the use of LU decomposition methods such 
as those found in the IMSL library, e.g. IMSL-LEQT2B and IMSL-LEQT2F (B, banded; F 
full), and of biconjugate gradient methods (ILUBCG2 and ILUCG2)22, which include LU 
preconditioning. Note that the results from ILUCG2 are not presented here.14 

Direct solvers considered include those from the Yale Sparse Matrix Package (YSMP),23-24 
which use an LU decomposition with compact storage but no pivoting. Compact storage is 
achieved by storing only the non-zero coefficients and using an efficient accounting system to 
store their location within [A]. In addition, a storage vector is reserved for the fill-in terms 
created during the decomposition process. This YSMP solver has been used in the p a ~ t . ’ ~ , ~ ’  
The general solution process of YSMP consists of optimal automatic reordering of [A] to 
optimize the elimination process, symbolic decomposition to determine where the fill-in terms 
will occur during numerical decomposition, numerical decomposition whereby [A] is de- 
composed into L-D-U matrices, and numerical solution consisting of forward and backward 
substitution. The first two steps need be done only once for a given system of equations. The 
efficiency of using automatic reordering was tested for both banded and sparse matrices and 
with and without D’Yakonov iterations. The results can be found in Tables I1 and 111. It can 
be seen that automatic reordering applied to a banded matrix system using D’Yakonov iterations 
yields solutions in times much shorter than other methods. 

The direct and semi-iterative solvers all terminate operation when the normalized residuals 
for the penalized momentum equations reach R,  < lop5. A sample of the relative performance 
of these solvers (YSMP, IMSL, conjugate gradient (CG),26 etc.), including for comparison a line 

Table 11. Execution times (seconds), PENCA, using YSMP without DYa- 
konov iterations, flow in a square cavity with a sliding top, Re = 100 

No reordering With reordering 

Grid Sparse [A] Banded [A] Sparse [A] Banded [A] 

10 x 10 37.9 7.7 5.9 5.7 
12 x 12 141.6 17.0 11.9 11.5 
14 x 14 419.1 34.4 23.3 20,4 
18 x 18 1 15.3 57-8 71.0 
22 x 22 283.5 152.9 136.7 
30 x 30 498.1 434.1 

- 

- 

- - 

Table 111. Execution times (seconds), PENCA, using YSMP with DYako- 
nov iterations, flow in a square cavity with a sliding top, Re = 100 

No reordering With reordering 

Grid Sparse [A] Banded [ A ]  Sparse [A] Banded [A] 
~~ 

10 x 10 17.6 4.5 3.9 3.8 
12 x 12 61.2 8.9 7.3 6.8 
14 x 14 174.6 17.1 12.6 11.6 
18 x 18 48.8 27.6 32.6 
22 x 22 115.1 67.1 61.2 
30 x 30 206.1 181.2 

- 

- 

- - 
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Table IV. Execution times (seconds) using various solvers for simulating laminar flow in a square cavity 
with moving lid using PENCA 

~~ 

Grid 1 IMSL-LEQT2F IMSL-LEQT2B YSMP CG ILUBCG2 Gauss-Seidel 

6 x 6  10' 2 4  - 
102 - 
103 2.4 - 
104 
105 2.4 11.3 - 4 4  9.4 - 

102 - 
103 106.7 - 3.5 281.1 - - 

104 - - 275.7 - 

- - 4.3 10.9 
- 5.5 5.5 96.1 
- 7.4 6.2 946.2 

- 

- - 9.3 - - - 

- 155.7 
- 253.6 - 1525.9 

10 x 10 10' 107.3 3.5 208.8 - 

- 

- - 

105 106.9 107.6 3-4 422.3 Diverges - 

iterative Gauss-Seidel solver, is given in Table IV. An examination of Table IV reveals that all 
entries were not attempted, because it became clear that some solvers were either overly expensive 
or no solution could be obtained. It should also be noted from Table IV that the CPU time 
required by some solvers was extremely sensitive to the value of 1 as well as the grid density; 
although not shown, the only solver that displayed little sensitivity to the grid size was YSMP.I4 
It is important to note that Table IV gives convergence histories that meet the convergence 
criterion R ,  < that for 12 lo5 the results become insensitive to the value of I and that 
the results agree to within four significant digits with those obtained using SIMPLE-C. 

The IMSL-based solvers were found to be reasonably robust but, relative to the YSMP direct 
solver, intolerably slow. The most efficient solver as a function of the magnitude of the penalty 
parameter A can be readily identified as the YSMP solver. The conjugate gradient solvers 
performed poorly because of lack of diagonal dominance in the matrix [A].14 

From the data contained in Tables 11-IV it is clear that reordering a banded matrix combined 
with D'Yakonov iterations is the most efficient combination for the YSMP solver. 

5. LAMINAR AND TURBULENT FLOW TEST CASES 

It is clear from Section 4.2 that PENSA is too CPU-bound. PENCA with non-symmetric YSMP 
and automatic ordering applied to a banded matrix is the fastest and is shown to be faster than 
a tuned SIMPLE-type algorithm (compare results for flow in a square cavity, 10 x 10 grid: from 
Table I SIMPLE-C requires 9.2 s, while from Table I11 PENCA requires only 3.8 s). Below, 
various laminar and turbulent flows are calculated to see whether this finding is general. 

Four test cases are considered for both laminar and turbulent flows. The turbulence model 
is the high-Reynolds-number form of the k-E model.*' Wall functions are used to bridge the 
viscous near-wall region. PENCA (1 = lo5 always) combined with the k-E model is referred to 
as PENCAKE, whereby the equations for turbulence are solved sequentially using a line-by-line 
TDMA solver. The four cases, all of which use Re = pI,uo/p,  are as follows: 

(1) square lid-driven cavity flow, sides of dimension I,, Re = 100 (laminar) and 10,000 

(2) developing flow in a plane channel with walls separated by distance I,, Re = 100 (laminar) 
(turbulent) 

and 10,000 (turbulent), both with symmetry imposed at the channel centreline 
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(3) plane jet impingement upon a flat wall, Re = 100 (laminar) and 5000 (turbulent); the 
domain is 131, long and 2-61, high and the jet thickness is I ,  with symmetry imposed along 
the jet centreline 

(4) developing flow in a plane channel with a 2: 1 sudden expansion, Re = 100 (laminar) and 
5000 (turbulent); the domain is 810 long and 21, high with fluid entering through an 
entrance 1, high and symmetry imposed along the axial centreline. 

Three grid densities are used for each configuration, as listed in Table V. Inlet conditions are 
for uniform flow; outlet conditions are specified as zero axial gradient; wall conditions are either 
zero slip or wall functions. Turbulence inlet conditions are k = 0.005~; and E = C,k''s/0~03(1,/2). 
Note that for the turbulence equations the underrelaxation was optimized for all cases. Tests 
indicate that mass flow rate corrections (see e.g. Reference 2) are beneficial in reducing the CPU 
time for all PENCA and SIMPLE-C. 

Execution times for the four flows considered are given in Table VI. It is clear that PENCA 
and PENCAKE give solutions generally in less than half the time required by the tuned 

Table V. Grid sizes used for laminar and turbulent flow investi- 
gations. Numbers indicate the grid nodes in the axial x cross- 

stream directions 
~~ 

Flow case Coarse grid Medium grid Fine grid 

Cavity 10 x 10 22 x 22 30 x 30 
Channel 15 x 8 30 x 16 45 x 20 
Impingement 8 x 15 17 x 28 22 x 41 
Expansion 15 x 8 30 x 16 45 x 20 

Table VI. Execution times (seconds) for optimally configured simulations. Penalty implies use of PENCA 
for laminar flows and PENCAKE for turbulent flows. Penalty parameter is lo5 for all cases 

Laminar (L) or Penalty (P) or 
Flow case turbulent (T) SIMPLE-C (S) Coarse grid Medium grid Fine grid 

Cavity L 
L 
T 
T 

Channel L 
L 
T 
T 

L 
T 
T 

L 
T 
T 

Jet impingement L 

Sudden expansion L 

P 
S 
P 
S 

P 
S 
P 
S 

P 
S 
P 
S 

P 
S 
P 
S 

5.1 
9.4 

11.7 
50-0 

7.0 
10.6 
13.0 
16.5 

9-6 
39.2 
30.6 
88.2 
7.9 

34.5 
30.9 
68.3 

47.3 
93.6 

3003  
50 1.6 

51.5 
106.0 
86.0 

151.4 

806 
276.7 
289.1 
634.5 
58.9 

309.4 
191.5 
531.3 

131.6 
249.8 
634.3 

1403.0 

131.6 
382.4 
21 1.4 
608.6 

2664 
651.7 

1 1  12.0 
1246.6 
144.2 
854.5 
546.0 

1620.9 
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SIMPLE-C algorithm. Furthermore, as the grid is refined, it is apparent that PENCA and 
PENCAKE give better relative performance with increasing grid densities. The relatively high 
CPU times required to solve the jet impingement problem using PENCAKE are due to the 
large number of iterations required prior to invoking D'Yakonov iterations. The execution times 
are of course dependent upon the number of equations to be solved and the time required to 
establish virtual storage within the YSMP solver. 

The data from Table VI do not indicate the rate at which the solutions can be obtained. An 
example of the residual reduction for laminar flow in a square cavity, coarse grid (see Table V) 
is given in Figure 4, where results for PENSA, PENCA and SIMPLE-C are displayed. It is 
quite evident that PENCA achieves almost one order of magnitude reduction in the residual 
for every iteration while other algorithms require at least 10 iterations. An interesting comparison 
is the effect of the stringency of the convergence criterion on the performance of the algorithms. 
For the cases considered so far the residual was R, < lop5, where $J refers to the equation being 
solved. If R, d is used on medium-sized grids (see Table V) to increase the accuracy to 
more than four significant digits, the percentage increase in execution time for SIMPLE-C is, 
on average for all four cases, more than twice that for PENCA and PENCAKE.I4 Note that 
again the velocity and pressure fields obtained are exactly the same regardless of the algorithm 
used. 

It has been foundI4 that in these tests with a YSMP solver the magnitude of 1 has little effect 
on the number of iterations required to obtain solutions; moreover, the CPU time is also 
essentially independent of A. The storage requirements for PENCAKE and SIMPLE-C are given 
in Table VII, from which it is clear that the storage requirements depend almost linearly on the 
grid size for all methods, but for the penalty function formulations the storage overhead is on 
average about five times that of a SIMPLE-type algorithm. Also given in the table is the storage 
required for the fill-in terms of the YSMP solver. That is, YSMP requires storage for the non-zero 
elements in [A]. It also requires a storage vector to handle the factorization. 

Other tests have been performed to evaluate PENCAKE.I4 These include effects of grid aspect 
ratios, convergence criterion, bandwidth of [A], optimum number of factorizations of [A] prior 
to invoking D'Yakonov iterations, optimum underrelaxation parameters in SIMPLE-C, costs 

A PENSA h = l  
+ PENSA h - 1 0  

PENCA a = 100,ooo 
102 

0 10 20 30 40 50 
ITERATIONS 

Figure 4. Residual reduction for coarse grid, laminar flow in a square cavity as a function of iteration count 
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Table VII. Total and fill-in storage (kilowords) required for various 
grid densities. Note that grid density groupings have products similar in 

magnitude 

PENCA or PENCAKE SIMPLE-C 

Grid Storage Fill-in Storage Fill-in 

10 x 10 20 9.7 9 0 
15 x 8 22 11.4 11 0 
8 x 15 23 11.8 11 0 

17 x 28 163 1 16.3 41 0 
3 0 x  16 162 1 16-0 41 0 
22 x 22 177 129.1 42 0 

45 x 20 383 273.2 76 0 
30 x 30 390 3 17.6 76 0 
22 x 41 388 303.0 76 0 

including both execution times and storage costs using charging algorithms from different 
Canadian universities, etc. 

6. CONCLUSIONS AND RECOMMENDATIONS 

The work presented here compares the execution time and storage requirements of the 
well-known SIMPLE-C algorithm with those of the new algorithms PENSA and PENCA, all 
of which have been applied to both laminar and turbulent flows. The following conclusions can 
be drawn. 

1. A penalty-function, finite volume method combined with a suitable solver can be used to 
simulate both laminar and turbulent fluid flows with similar accuracy to that obtained with 
a conventional finite volume method. 

2. A sequential penalty function formulation (PENSA) is unacceptably slow for fluid flow 
calculations. 

3. Gauss-Seidel, conjugate gradient, preconditioned conjugate gradient and IMSL direct 
solvers are too slow and/or require excessive computer storage when applied to the coupled 
system of penalized form of the Navier-Stokes equations. 

4. YSMP with automatic reordering of a banded matrix is adequate for the efficient solution 
of the flow with the penalty coupled algorithm PENCA. 

5. PENCA and PENCAKE are faster than a tuned SIMPLE-C algorithm. 
6. The SIMPLE-C algorithm requires less storage than PENCA or PENCAKE. 

It is recommended that PENSA not be abandoned: ways need to be found to increase the 
U-V coupling. A custom solver that uses to advantage the sparse and banded nature of the 
coefficient matrix needs to be devised. Extensions of the method to three-dimensional flows, flows 
with buoyancy and the inclusion of higher-order difference schemes should be given priority to 
further evaluate this method. 
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